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Abstract

The fields and gradients due to image charges and image currents
in coaxial conductors inside and outside of a relativistic elec-
tron ring are calculated using a plane-geometry approximation.
In the cases considered one of the conducting boundaries is of

a squirrel-cage type which prevents azimuthal current flow and
thus suppresses the magnetic image fields associated with such
currents. Various combinations (squirrel-cage inside/conductor
outside or vice versa, one conductor only or one squirrel-cage
only either inside or outside of the ring) were studied and the
effects of the image forces on incoherent betatron frequencies
were calculated. Results are compared with exact numerical cal-
culations (involving Bessel functions) by Laslett, Hofmann and

Greenwald.




1. Introduction

The radial and axial betatron frequencies in an electron ring accelerator
(ERA) are strongly affected by image forces due to surrounding walls. Without
such boundaries, if the electron ring is located in a uniform external
magnetic field, no focusing exists in the axial direction. This is still
true when coaxial conducting cylinders are present, since the focusing forces
due to electrostatic images are essentially cancelled by the defocusing effects
of the magnetic image fields. However, if the magnetic images are suppressed,
a net focusing effect may exist. This is achieved with the use of a '"squirrel-
cage' cylinder in which no azimuthal image currents can flow, while electro-
static images are practically unaffected.1

The use of such a "squirrel cage" to obtain axial focusing is in conflict
with the need for a coaxial wall with good azimuthal conductivity to suppress
the negative mass instability.2 In an attempt to cure both problems, one can
use a combination of squirrel cage and conducting cylinder, with the squirrel
cage inside and the conductor outside or vice versa. The influence on axial
focusing and negative mass instability then depends strongly on the relative
spacing between the electron ring and the two coaxial boundaries.

Theoretically, the calculation of electric and magnetic fields and
gradients in such a geometry is a somewhat tedious problem. Hofmann3 solved
it for the case where the squirrel cage is outside and the conductor inside,
and he tabulated the fields and gradients for a number of parameter values.

A similar study was done by Greenwald4 for the case where both inner and outer
cylinders are good conductors.

Such exact mathematical solutions with the use of Bessel functions have
the disadvantage that one has to resort to lengthy computer calculations or
tabulated results. From a practical point of view, however, a simple analytical

approximation is often sufficient and more useful to make quick survey-type




calculations in‘connection with design studies or experiments. This motivated
the analysis presented in this report.

In the model used here, the coaxial cylinders are approximated by coplanar
boundaries and the electron ring by a line charge. This implies that the
separation of the conductors is small compared to the diameter of the electron
ring. The squirrel cage is assumed to be an ideal conductor as far as electric
images are concerned, but to have no effect on the magnetic field. Section 2
treats the electrostatic problem, Section 3 the magnetostatic problem, and
in Section 4 the results are applied to obtain analytical expressions for the

image effects on the betatron frequencies. Complete expressions for the

frequencies are presented in Section 5.

2. Electrostatic Image Fields and Gradients

Consider a line charge of density A[C/m] situated between two co-planar

conductors as shown in Fig. 1 below.
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Fig. 1 Geometry of line charge between conducting
planes.
According to Smythes, this problem can be treated by conformal mapping, and
one obtains for the potential function U in the x = 0 plane the following

result (in MKS units):
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For the electric field strength in the x = 0 plane follows from (2):
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To obtain the contribution of the image charges to the electric field
along the x = 0 plane, we subtract from (3) the field due to a free line
charge, i.e.,
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By expanding the denominator to fourth order and differentiation, one obtains

for the image field, the first and second derivative at y = b the results:
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For completeness, we add the results when only one conductor or a squirrel

cage is present.

A. Conductor or squirrel cage inside
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B. Conductor or squirrel cage outside
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3. Magnetic Image Fields and Gradients

For the calculation of the magnetic image fields and gradients, we
ignore the squirrel cage, i.e., we assume that only one conductor exists,
either inside or outside of the electron ring. Let the distance between
beam and conductor be b. Furthermore, assume that the magnetic field has

not penetrated through the conductor.

A. Conductor inside, squirrel cage outside

In the plane-geometry approximation, the magnetic image field and its
first and second derivatives at the position of the beam in the x = 0 plane
is given by
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B. Conductor outside, squirrel cage inside
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4. Image Contributions to Betatron Frequencies

The radial and axial betatron frequencies are given in terms of the fields

and gradients at the equilibrium orbit R as follows:6
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Here, Er and BZ are the total electric and magentic fields at the equilibrium
orbit R. The last term in (20) is negligibly small in our case and will be
ignored subsequently.

For the image contributions, the curl and divergence are zero at r = R,

i.e., . N i i
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The Er term in (20) and (22) is due to the curvature of the beam and boundaries
and disappears if one goes to a plane-geometry approximation, as is being done
here. We therefore ignore it in the following calculations and write for the

S 2 2 A
changes in W and vz due to the image forces:
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Let R1 be the radius of the inner cylinder, R2 that of the outer cylinder.

Define the parameters
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Line charge A and current I for an electron ring with Ne electrons and a
fraction f = Ni/Ne of stationary ions are given by
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where Bc = Vo is the mean azimuthal velocity of the electrons.

With these parameters and replacing y by r, x by z, one obtains for the

image fields and gradients from the plane-geometry approximations the following

expressions:
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A. Squirrel cage outside, conductor inside
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E. Only a squirrel cage is present

In this case, no magnetic image contributions exist and the electric
fields and gradients are obtained by setting 62 = 0 in Eqs. (34) to (39).

From the force-balance equation, one gets
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Here we introduced the Budker parameter v which is the product of particle line

N 2
density L —< and classical electron radius r = ——~£a——j§ . The image contri-
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butions to the betatron frequencies are then obtained by substituting the
approximate results for the fields and gradients into Eq. (23) using the relation

(41). The results may then be written in the following form:
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For the parameter Ai’ one gets the following expressions.
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C. Squirrel cage only, inside
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To check the accuracy of our analytical approximation, we compare the
electric image fields and gradients according to Eqs. (25) and (26) with the

. . 4
exact numerical results obtained by Greenwald for a few values of the parameters

S and T. With the definitions
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we have the approximate expressions from (25) and (26):
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k k k k
e e r r
T S Eq. (25) Greenwald Eq. (26) Greenwald
0.95 1.05 0 0.61 -52.36 -50.50
1.10 1.98 2.47 -34.91 -36.17
1.20 2 X75 3.28 -32.18 -34.25
1.40 3.05 3.57 -31.86 -34.22
0.90 1.10 0 0.50 -13.09 -13.55

The numerical
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results were obtained from Greenwald's data using the relation
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As the table shows, there is a small difference between the plane-geometry
approximations and exact calculations due to the curvature of the beam and the
conductors in the actual configuration. However, from a practical point of
view, the errors are small enough that our analytical approximations are a useful
substitute for the numerical method, provided the walls remain close to the ring

beamn.

5. The Complete Expressions for the Betatron Frequencies

The complete expressions for the betatron frequencies are obtained by
including all contributions due to the applied magnetic field, the linear-beam
effects, the toroidal or "bias" terms, and the image terms in the formulas (20)
and (21) for vrz and vzz.

The gradient term due to the applied magnetic field can be calculated as

follows:
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The total field Er + VGBZ in the denominator of (48) is the sum of applied and
image fields at r = R.
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In our plane-geometry approximation, with inner and/or outer conducting

boundaries close to the beam, we can neglect the toroidal or "bias" term in

the expressions for the betatron frequencies that are generally used. From (50)

follows . .
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The image term in (51) depends again on the specific choice of conductor

and squirrel cage combinations. From Eqs, (25), (28), (31), (34), (37) and (41),

one obtains expressions of the form
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Combining all contributions, we can write Vs and v, in the following form:
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The first three terms in (59) and the first two terms in (60) represent the
contribution due to the gradient of the applied magnetic field. The first term

in the brackets represents the linear-beam effect that would exist in a straight

beam (R+«). From reference 6, we obtain

2 2
r 4R 1-£f-8

(61) B = aa+D) g
2 2
ZncABE 4R 1-f-8

(62) by = ba+D) 22

Here, the ring is assumed to have a minor cross section of elliptical shape
with semi-axis a in radial direction and semi-axis b in axial direction; R denotes
the major radius as before. Note that the symbols a and b have a different
meaning here than in the derivations presented in Sections 2 through 4. If
f>1- Bz, the linear term is defocusing (negative sign), for £ > 1 - 82 it
is focusing, both in the radial as well as in the axial direction.

For completeness and easy reference, we add the expressions for vrz and
vzz in the form given by Laslett7 for the case that the image effects are

calculated numerically using Bessel functionms.
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The difference between these equations and Laslett's original expressions is

due to the fact that we dropped the toroidal or "bias'" terms for reasons stated
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earlier. In addition, we left the B factor in all the terms where it enters
] 2 . bk s e .
while Laslett set B~ = 1 in some terms when strong relativistic cancellation
occurs. Thus, the above formulas are not restricted to relativistic energies.

The new parameters in (63) and (64) are defined as follows:
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where Q = -eNe is the total electron charge in the ring.
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where I = - 57r Vo is the total electron current in the ring. SE and SM
represent the position of electric and magnetic boundaries, el E and €1 M the
bl b

electric and magnetic image coefficients. 1If only one conductor is present

outside of the ring, for instance, the two coefficients are defined by Laslett

as follows (in cgs units):
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with SE = SM =8 = x If the conductor is inside the ring, (S-1) is to be

replaced by (1 -T). If the conductor is replaced by a squirrel cage, El,M is

practically negligible. With the definitions of (67) and (68), the gradient

terms in the formula for vzz may be written in the form
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which explains the image terms in Eqs. (63) and (64). In the case where only
a squirrel cage outside of the ring is present, the plane-geometry approximation
yielded the result (44) for the image contribution. By comparison with (69),
we see that €T 1/8, which is in agreement with Laslett's results.7

For the case where two conductors or a conductor and a squirrel cage are
present, both Greenwald4 and Hofmann3 defined € and € such that

1,E 1,M

SE = SM =8 = R2/R = ratio of outer wall boundary to major ring radius.
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